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ABSTRACT

IPv4 addresses are now exhausted, and as a result, the growth of IPv6 addresses has increased
significantly since 2010. The rate of increase of IPv6 usage is expected to continue; thus the
need to determine the geographic location of IPv6 hosts will grow to support location-aware
applications. Examples of services that require or benefit from IPv6 geolocation include overlay
networks, location-based security mechanisms, client language and policy determination, and
location targeted advertising. Internet protocol (IP) geolocation is the process of obtaining the
geographical location of a device or host using only the host’s IP address. This study looked
at using constraint-based geolocation (CBG), a latency-based measurement technique, on IPv6
infrastructure and analyzed location accuracy against ground truth. Results show that overall
IPv6 CBG had up to 30% larger average error distance estimates as compared to IPv4 CBG.
However, CBG performance varied depending on the location of the target host. Hosts located
in the Asia-Pacific region performed the worst, while hosts located in Europe had the best
performance in median error distance. AS-level path differences between IPv4 and IPv6 and
the number of landmarks had the most significant impact on CBG performance.
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CHAPTER 1:
Introduction

An Internet Protocol (IP) address is a unique 32 or 128 bit unsigned integer assigned to ev-
ery device connected to the Internet. The Internet Assigned Numbers Authority (IANA) is the
governing body that allocates IP address blocks to the Regional Internet Registrys (RIRs). Dif-
ferent RIRs serve the following areas of the world: Africa, Asia/Pacific, North America, Latin
America, Europe/Middle East/Central Asia. The five RIRs then further allocate IP address
blocks to Internet Service Providers (ISPs) that are then assigned to businesses, organizations
and individuals. Similar to a postal address, an IP address is required to properly request and
receive data between Internet devices. 32-bit Internet Protocol version 4 (IPv4) addresses pro-
vide roughly 4 billion addresses; however, because of address allocation policy that depends
on contiguous address blocks for route aggregation, the number of available IPv4 addresses is
much smaller. In 2011, IANA’s pool of available IPv4 addresses was exhausted, and the RIRs
have few addresses remaining [1, 2]. Although Network Address Translation (NAT) [3], which
permits multiple devices to communicate using a single public IP address, has historically re-
lieved some of the IPv4 address pressure, it has long-term limitations. NAT requires at least one
public address, a requirement that is become more difficult to meet in large residential networks
and in countries without large address allocations. Further, NAT impedes end-to-end connec-
tivity, creates single-points of failure where fates are shared, and implies potential collisions in
large enterprises connecting VPNs [4].

Now with the exhaustion of unassigned IPv4 addresses, the industry is more rapidly moving
toward IPv6, including adoption by large infrastructure operators and network providers [1, 2,
5, 6]. Internet Protocol version 6 (IPv6) was standardized in 1998 as the successor to IPv4,
the Internet’s long-standing Internet protocol [7]. Major network vendors and operators already
support IPv6 in their operating systems and network equipment [6, 8]. Additionally, the U.S.
government has mandated that their networks shift to IPv6 to increase network robustness and
mission capability [8].

As IPv6 grows, so does the need to determine the geographic location of these connected hosts.
IP geolocation is the process of obtaining the physical geographical location of a device or
host on the basis of its IP address. The geographic granularity can span continents, countries,
regions, cities, or streets [9]. Location-aware applications depend on efficient and accurate
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inference of IP geolocation to drive a multitude of valuable services. Services requiring ge-
olocation include content delivery providers that rely on the location of their users; transaction
authorization from approved locations; and automated selection of browser/content features like
language and consumer advertising. A world where every connected devices could be located
would enable countless innovative services.

1.1 Motivation
The growth of IPv6 continues to require research into network infrastructure, topology, and
supporting services. Internet users that do not have IPv6 dual-stack support, and thus cannot
reach IPv6 sites directly must use IPv4 infrastructure to carry IPv6 packets. This is done using
a technique known as tunneling, which encapsulates IPv6 packets within IPv4. Peering agree-
ments, Domain Name System (DNS) services, traffic and workload types in IPv6 can also vary
compared to IPv4 [10]. Unlike NAT in IPv4, where multiple devices can take on a single IP
address, the address space for IPv6 is so massive it is likely that a single device will take on
multiple IPv6 addresses. A study conducted by Dhamdhere et al. [11] suggests that data plane
performance of IPv6 is comparable to that of IPv4 if AS-level paths are the same, but can be
much worse than IPv4 if the AS-level paths differ. To the best of our knowledge, how this
difference affects current delay-based methods of IPv6 geolocation has not been investigated.
These differences mentioned above could reveal that some methods for geolocating IPv4 may
not work for Today, much of IP geolocation research has been focused on IPv4. Previous work
in geolocating IPv6 hosts were largely unfulfilled due to low IPv6 host density and lack of sup-
porting infrastructure [12]. Thus, we explore IPv6 geolocation in today’s Internet using the
Constraint Based Geolocation (CBG) methodology, a latency-based approach.

1.2 Research Questions
This thesis explores whether using latency-based measurements is a viable “first-step” coarse-
grain geolocation technique for IPv6 hosts. We create inference models, which help us estimate
distance to a target, using multilateration of known hosts to geolocate our collected ground truth
datasets. In doing so, we investigate the following:

• What is the accuracy of CBG when geolocating IPv6 hosts?
• What are the accuracy differences for dual-stacked hosts?
• What other unknown factors could affect the accuracy of CBG when geolocating IPv6

hosts?
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1.3 Thesis Structure
The remainder of this thesis is organized as follows:

• Chapter 2 covers leading IP geolocation techniques in use and related work.
• Chapter 3 discusses the CBG technique, multilateration process and how delay measure-

ments convert to distance constraints.
• Chapter 4 details the results from geolocating and measuring the AS-level paths of three

datasets. One dataset was manually collected by confirming IPv4-v6 address pairs of
academic universities or institutions. Further details on how we collected this dataset
is discussed in Chapter 4. The second dataset is a listing of dual-stacked servers with
known location provided by a content distribution network. Our last dataset comes from
[13], listing one-to-one IPv4-v6 address pairs. However, true location is unknown for
these hosts. We indirectly measure accuracy by comparing the estimated CBG IPv4 to
the estimated CBG IPv6 location, which provides a measure of confidence to our CBG
estimates.

• Chapter 5 provides conclusions based on this research and recommendations for future
areas of research.

3
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CHAPTER 2:
Background and Related Work

There are many ways to obtain geographical data from an Internet host. An obvious way would
be to ask the device or end-user to submit data of where they are located and provide updates if
their location changes or one could utilize the Global Positioning System (GPS) on that device
to provide locational data. But what if the device or end-user does not want to share their
geographic location data due to privacy concerns or provides false data? Or what if the device
is not equipped with a GPS sensor or is not activated? Moreover, infrastructure devices such
as routers, switches, or servers may also need to be geolocated. Clearly, obtaining accurate and
reliable locational data is difficult and poses several challenges. Ideal IP geolocation methods
strive to determine the location of an end device with the least effort and resources, while
generating the most accurate result. A process that can be automated and continually updated is
also ideal. This chapter reviews the leading methods in obtaining geographical data on Internet
hosts and discusses the challenges each method presents.

2.1 Geolocation Methods
There are two broad categories to IP geolocation. The first is a database-driven approach con-
taining records for a range of IP addresses. Geographical information is associated with each
range of IP addresses. Some IP geolocation databases are fee for use, and others can be searched
for free online. The second category relies on network measurements, where delays and infor-
mation of the network topology is used. In this study, we look at CBG, a delay-based approach.

2.1.1 Commercial and Public Sources
IP geolocation databases contain records for a range of IP addresses called blocks or prefixes.
Blocks can span non-Classless Inter-domain Routing (CIDR) subsets of the address. Most ge-
olocation database entries are composed of an integer value pair corresponding to an address
block range. Each block is associated with geographical information that could include coun-
try, region, state, city, ZIP code, area code, and latitude/longitude. Users can then query the
database to obtain geographical data regarding an IP address [14]. Some examples of IP ge-
olocation databases are IP2Location, MaxMind, HostIP, and InfoDB [14, 15]. IP2Location and
MaxMind are paid service commercial databases, while HostIP and InfoDB are freely avail-
able. Methods into how commercial databases perform IP geolocation are proprietary so little
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is known of how these work. InfoDB is built upon a free MaxMind database version and is
incremented by the IANA locality information. Lastly, HostIP data relies on direct feedback
from participating users and ISPs [14, 16]. Table 2.1 is an overview of the numbers of records
within each geographic database [17].

Database Address Blocks Lat Long Countries Cities
HostIP 8,892,291 33,680 238 23,700

IP2Location 6,709,973 17,183 240 13,690
InfoDB 3,539,029 169,209 237 98,143

MaxMind 3,562,204 203,255 244 175,035

Table 2.1: Number of entries recorded within each geographic database

A study conducted by Uhlig et al. show the geolocation accuracy for InfoDB and MaxMind
have roughly the same distance distributions since InfoDB is based on the free version of Max-
Mind [14]. About 20% of the blocks in both InfoDB and MaxMind have error distances under
20 km from the ground truth. The remaining 80% have between 20 km and 800 km, where 800
km was considered the maximum distance in a country and cut off at that distance. IP2Location
had larger error distances with roughly 20% of the blocks under 200km and the remaining 80%
between 200 km and 800 km. Another study into IP geolocation databases conducted by Huf-
faker et al. show the HostIP database performing with varying results depending on the IP
targets. PlanetLab, a globally distributed set of computers available for computer networking
research and distributed systems research, were used and showed about 79% of addresses within
80 km of ground truth [18]. A dataset from Freebox that lists French ADSL networks by region
showed HostIP database with 80% of addresses over 100 km, with 20% over 1000 km [18].

Using public information sources and commercial databases has its limitations. Geolocation
databases may make us of public information sources such as whois or DNS. The whois service
is a Transmission Control Protocol (TCP)-based transaction-oriented query and response proto-
col used to provide information services to internet users. This service is like a “white-pages”
for registered domains, allowing users to request registered information by the organization
such as the organization’s phone number, administrator, or physical address [19]. The DNS
is a mechanism for naming resources where names are usable in different hosts, network and
administrative organizations. A DNS resource record (RR) provides a mapping of hostname to
an IP address [20]. Public databases are not completely reliable since there are no requirements
or incentives to keep it up-to-date and accurate. A single organization such as an ISP can be
allocated an IP block, but will only register one location such as their corporate headquarters.
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This effectively maps large address blocks to a single location. Of course, not all end hosts are
located at or near the organization’s registered address. This can introduce error distances to
the end host if the ISP has consumers in geographically dispersed areas. Commercial databases
also leverage public sources and ISP block allocations to populate their databases but can fall to
the same problem of stale or bad data entries. Without knowing the methodology of commer-
cial databases in performing IP geolocation, their reliability also comes into question. Studies
into geolocation databases show that these databases have made significant improvements and
can usually geolocate at the country-level. However, database entries are greatly disproportion-
ate to popular countries (e.g., U.S.) and are not viable for consistent and accurate geolocation
services [14, 21].

2.1.2 Measurements
The advantage of a latency-based approach is that it is coupled to a device’s location by physics,
whereas the database method is not. Delay measurements are the most widely used and im-
proved upon among geolocation measurement techniques. Probe tools, such as Packet InterNet
Groper (ping) or traceroute, are network administration tools used to test the reachability of a
host on an IP network and to measure the round trip time (RTT) between an originating and
destination host. An Internet Control Message Protocol (ICMP) echo request packet is sent
from say a source host A and waits for the corresponding ICMP echo reply packet from the
destination host B [22]. The time delta of the probes is the RTT delay measurements. Figure
2.1 show the process.

Figure 2.1: Overall delay between two random hosts in packet-switched network

The overall delay, d, between two randomly selected hosts in a packet-switched network is
expressed below:

d = dt +dp +q+ ε (2.1)

Transmission delay dt is the time the first and last bit leaving the outbound link on one end
of a host. The propagation delay dp is the physical minimum time the bits take traveling on
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the wire to reach the input link of the receiving host. Queuing delay, q, is the time a packet is
queued for transmission, but waits for the output link to be available. Random delay, ε , is time
loss due to media access contention, router processing overhead, and network disturbances.
We assume that propagation delay dominates transmission delay and processing delay. Packets
traveling along a fiber-optic cable are estimated to move at two-thirds the speed of light in a
vacuum [23]. This provides a convenient value of 1ms RTT per 100km of cable to express
the geographic distance in light-milliseconds to obtain an absolute maximum distance using
the RTT (or one-way delay) between A and B. The measured RTT is always larger than the
aforementioned ”perfect-case” because fiber-optic cable is not laid out in a straight line. Cable
paths usually follow railways, highways, or power lines, through varying levels of elevation
producing a rather circuitous path through any number of nodes. This is far from the straight-
line ideal case and thus introduces delay in the from of added distance [23]. Lastly, BGP inter-
AS routing policies tend to exhibit path inflation generating larger delays resulting in larger
geographic distances. Therefore, a geolocation technique should account for network topology
and routes to capture path-specific latency inflations [12].

The GeoPing method developed by Padmanabhan and Subramanian [24] uses network delay
measurements made from geographically dispersed locations to infer the coordinates of the end
host or nearby neighbors. GeoPing does this by building a map of delay vectors from a set of
probes with known location we will call landmarks, to a single host also with known location.
A delay vector to an end host, or target, with unknown location is measured from the set of all
probes to the target. The delay vector is compared to every delay vector in the map of delay
vectors to identify the approximate match. The Euclidean distance between the delay vector and
every other vector is calculated, and the “nearest” landmark to the distance vector is selected
as the location estimate of the target. The intuition is that the delay that packets experience
between network hosts is a function of the geographic distance between the hosts. Landmarks
are known positions of end devices that are measured to determine a network delay model. The
measured delay pattern of the target host is compared to the collected landmark models and an
location estimation for the target host is produced. GeoPing is not without limitations. Possible
location estimates for a target is dependent on the number of landmarks participating. Thus,
this limits the location estimate to a discrete set of possible locations [25, 26].

The CBG methodology builds off the work of GeoPing and introduces multilateration to infer
the location of Internet hosts. The CBG methodology will be detailed in Section 3.
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2.2 Geolocation in IPv6
2.2.1 Parallels to IPv4
IPv6 can use the same public and commercial databases used in IPv4. We could associate an
IPv6 address to an IPv4 address through whois or DNS, which can provide more locational data
to the IPv6 address. Also, as we will later find in Chapter 4, commercial organizations appear to
be leveraging existing IPv4 address entries, to provide geographical location data to associated
IPv6 addresses.

IPv6 still travels over the same medium as IPv4 and is subject to the same physical constraints.
Delay over IPv6 paths is comparable to that over IPv4 paths if AS-level paths are the same [11].
As a starting point for measurement-based IPv6 geolocation, we use the same latency-based
techniques used for IPv4 geolocation.

2.2.2 Past Work
The only prior study that used delay measurements to geolocate IPv6 devices was conducted in
2006 [12]. Only two measurement nodes in western Europe that supported IPv6 were available
for testing. Delay measurements for IPv6 were measured between these two nodes and com-
pared to IPv4 delay between the same two nodes. Then, an adjustment factor was applied to
IPv4 measurements to create an artificial data set for IPv6 CBG. Their results did not explicitly
state error distance performance of IPv6 against IPv4, but only that the IPv6 delay factor over
IPv4 was 1.06 suggesting that the confidence area regions would increase by the same factor.
The study conducted by [12] compared IPv6 performance against IPv4 was summarized as still
incomplete due to the lack of IPv6 supporting infrastructure and landmarks.

2.2.3 Challenges
Geolocating in the IPv6 poses different and potentially harder challenges over IPv4. Unlike
IPv4, IPv6 has a much larger address space, making it infeasible to enumerate and record
geolocation data for all potential IPv6 address blocks. Also, the affects from tunneling and
auto-tunneling through transition technologies such as 6to4, Teredo, or NAT64/DNS64, are still
unknown for delay-based geolocation methods [10]. Lastly, although data plane performances
of IPv6 are comparable to that of IPv4 if AS-level paths are the same, this does not confirm
that we can use delay-based geolocation for the IPv6 space [11]. For AS-level paths that do
differ, the feasibility and level of accuracy when using delay-based geolocation for IPv6 is still
unknown.
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We know that the number of globally unique IPv6 ASs is now roughly 17% compared to IPv4
[27]. Recent work has shown that the average AS path length for IPv6 is decreasing. The work
concludes that the overall decreasing trend on the average IPv6 AS path length is due to an
increasing dominance of a single internet transit provide [11]. Thesis thesis looks at how IPv4
and IPv6 path lengths (PLs) affect CBG.
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CHAPTER 3:
Methodology

IP geolocation is the process of obtaining the physical geographic location of a device given only
the device’s IP address. CBG is a popular first-step method for coarse-grained IPv4 geolocation
and serves as a foundation for other, more precise, geolocation methods, e.g., [9, 12, 26, 28,
29]. CBG infers the geographic location of end hosts using multilateration. Multilateration
refers to the process of estimating a position using multiple distance measurements from known
landmarks to the target. For example, GPS multilateration requires at least three satellites to
estimate the position of a GPS receiver. Precise timing kept by satellites with on-board atomic
clocks provide the receiver timing and timing interval information to calculate its position.
Each satellite continually transmits messages to the GPS receiver that includes the time the
message was transmitted, and the satellite’s position at time of message transmission. The
receiver determines the transit time of each message and computes the distance to each satellite
using the speed of light. These distances and satellites’ locations are used to compute the
location of the receiver using analytic geometry [30].

Unlike GeoPing, described in Section 2.1.2, where the possible inferences of a device’s ge-
olocation are limited to a discrete set of locations, CBG estimates the target location within a
constrained continuous space. Additionally, a confidence region to the estimated location of
the target is provided, allowing for geographic area resolution analysis. Lastly, CBG allows for
the relationship between network delay and distance to be re-calibrated given the current state
of the network. This is achieved through regular network delay measurements to calculate the
geographic distance relationship.

This chapter first describes our method of categorizing landmarks and hosts by regions. Next,
the network infrastructure from which we obtain network delay measurements is discussed.
Then, we describe the CBG methodology to geolocate an arbitrary target IP. Finally, we detail
how we used AS-level path measurements to provide insight into CBG performance.

3.1 Geographical Layout
We categorized each landmark and host from our datasets described in Section 4.2 using known
ground truth or by inferred MaxMind location by country and by geographic region for com-
parison. Our categorization is the same used by the RIR [31] and is shown in Figure 3.1 with
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one exception. We separate an area from the APNIC region into a region we will refer to as
Oceania. We outline Oceania as the southeast corner of Asia to include Australia and land areas
not connected to mainland Asia. We note that all hosts located in Malaysia are located on the
Asian mainland, not on Malaysia’s island territory. In separating the APNIC region into two re-
gions, we hope to provide more insight into the Asia Pacific islands that are geographically not
connected to the Asian mainland. This geographical feature could reveal significant differences
in latency measurements, thus affecting CBG performance in each region. In total, there are six
regions and 84 countries among all datasets.

Figure 3.1: Global map of Regional Internet Registry coverage

The countries summarized in Table 3.1 represent all the countries found in our dataset; however,
not all countries were represented in each dataset. Table 3.1 serves as an aid to the reader to
how we categorized a landmark or host, particularly in Oceania, the Caribbean, or bordering
regions. Additionally, it serves as a minimum list of countries represented in this study.
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AfriNIC APNIC RIPE NCC LACNIC ARIN Oceania

Egypt Bhutan Austria Argentina Bahamas Australia
Kenya China Bahrain Brazil Canada Indonesia

Mauritius Hong Kong Belgium Chile Grenada New Caledonia
South Africa India Bosnia/Herzegovina Colombia Jamaica New Zealand

Tanzania Japan Bulgaria Costa Rica Puerto Rico Philippines
Malaysia Croatia Ecuador United States
Singapore Cyprus Honduras

South Korea Czech Republic Mexico
Sri Lanka Denmark Peru

Taiwan Estonia Sint Maarten
Thailand Finland Uruguay
Vietnam France

Germany
Greece

Hungary
Iceland
Ireland
Israel
Italy

Kazakhstan
Kuwait
Latvia

Lichtenstein
Luxembourg
Macedonia
Moldova

Netherlands
Norway
Oman
Poland

Portugal
Qatar

Romania
Russian
Serbia

Slovakia
Slovenia

Spain
Sweden

Switzerland
Turkey
Ukraine

United Arab Emirates
United Kingdom

Vatican City

Table 3.1: Country to region category dataset
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3.2 Probing Infrastructure
For our experiment, we utilize the worldwide distributed network measurement infrastructure of
Cooperative Association for Internet Data Analysis (CAIDA). CAIDA is a collaboration among
commercial, government, and research organizations to promote greater cooperation in the en-
gineering and maintenance of global Internet infrastructure. archipelago (Ark) is CAIDA’s
active measurement platform for scientific analysis of Internet traffic, topology, routing, and
performance [32]. The geographic location of the Ark monitors are known and serve as our
landmarks from which we build our network delay models. Of the 80 monitors within the Ark
infrastructure, 29 monitors were both IPv4 and IPv6 capable. Figure 3.2 shows the locations of
the Ark monitors used in this study.

Due to our constrained list of capable IPv4-v6 landmarks, this study is limited to a set of land-
marks predominantly located in the United States and Western Europe. As such, we expect that
without landmarks in Central & South America, Africa, and the Middle East regions, this will
degrade our IP geolocation performance for hosts located in those regions. Table 3.2 shows a
complete listing and details of the Ark landmarks used in this study.

As described in Section 2.1.2, probes will be sent from our select group of landmarks to our
target hosts in each of our datasets described in Chapter 4. To measure RTT, ping probes will
be utilized. For measuring AS-level paths, traceroute probes will be used. Section 3.5 describes
how we utilized traceroute probes to measure AS-level paths.

Figure 3.2: Location of Archipelago landmarks
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Landmark Name Location Organization Region

ams-nl Amsterdam, Netherlands SURFnet RIPE NCC

ams2-nl Amsterdam, Netherlands AMS-IX RIPE NCC

ams3-nl Amsterdam, Netherlands RIPE NCC RIPE NCC

bcn-es Barcelona, Spain Universitat Politecnica de Catalunya RIPE NCC

bma-se Kista, Sweden Acreo RIPE NCC

bwi-us Aberdeen, MD, U.S. U.S. Army Research Lab ARIN

cbg-uk Cambridge, United Kingdom University of Cambridge RIPE NCC

cgk-id Jakarta, Indonesia Indonesian IPv6 Task Force Oceania

cph-dk Ballerup, Denmark Solido Networks ApS RIPE NCC

dac-bd Dhaka, Bangladesh BDCOM Online Limited APNIC

dub-ie Dublin, Ireland HEAnet RIPE NCC

eug-us Eugene, OR, U.S. University of Oregon ARIN

hel-fi Espoo, Finland TKK RIPE NCC

her-gr Heraklion, Crete, Greece Foundation for Research and Technology RIPE NCC

hkg-cn Hong Kong, China Tinet APNIC

iad-us Chantilly, VA, U.S. ARIN ARIN

jfk-us New York, NY, U.S. Hurricane Electric ARIN

ktm-np Kathmandu, Nepal Nepal Research and Education Network APNIC

lax-us Los Angeles, CA, U.S. CENIC ARIN

mnl-ph Quezon City, Philippines Advanced Science Technology Institute Oceania

per-au Perth, Australia AARNet Oceania

san-us San Diego, CA, U.S. CAIDA ARIN

sin-sg Singapore, Singapore DCS1 Pte Ltd APNIC

sjc2-us San Jose, CA, U.S. Hurricane Electric ARIN

sql-us Redwood City, CA, U.S. Internet Systems Consortium ARIN

syd-au Sydney, Australia AARNet Oceania

tpe-tw Hsinchu, Taiwan TWAREN APNIC

yow-ca Ottawa, ON, Canada Ottawa Internet Exchange ARIN

zrh2-ch Zug, Switzerland Kantonsschule Zug RIPE NCC

Table 3.2: Archipelago landmarks used to probe in both IPv4/6 space
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3.3 Constraint-based Geolocation
3.3.1 Building Landmark Delay Models
Landmark delay models establish great-circles, or range circles, that are used to convert delay
measurements to geographic distance constraints [25]. This is achieved by establishing an max-
imum, or loose distance, bound called the baseline and tight distance bound called the bestline

for each landmark Li in our set of landmarks LN as shown in Table 3.2. This relationship is
described in slope-intercept form by y = mx+b where m is the speed that the bits travel on the
medium and b denotes the delay factor experienced on the network. The estimated geographic
distance measured in kilometers (km) is represented by x. The RTT measured in milliseconds
(ms) is represented by y. The baseline and bestline is further explained below.

The baseline is the theoretical “perfect case” and applies to each of our landmarks. As described
in Section 2.1.2, we use 2/3 the speed of light as the speed digital information travels along a
fiber-optic cable in a vacuum, which translates nicely to mbase = 1/100. Since the baseline is
our perfect case with no additive delay, we set bbase = 0. CBG deliberately makes a distance
overestimation to the target for the baseline to ensure that the solution space is not empty. Using
known mbase and bbase, we compute the loose bound distance between sites by simply solving
for distance x from our baseline model with the minimum RTT measured between the two sites.
As shown from Figure 3.3, the baseline greatly overestimates the distance to a target host.
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Figure 3.3: Baseline and bestline greater circle target distance estimation
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To tighten this range and try to account for the additive network delay, we borrowed the work
from [25] to compute a bestline y = mix+bi for each landmark Li. The input consists of known
pairwise geodistances between landmarks, denoted by gi j, and minimum measured pairwise
RTTs between landmarks, denoted by di j. Figure 3.3 shows range constraint circles using
baseline and bestline models for a target host τ from Li.

To find mi and bi we use an objective function that minimizes the distance between the bestline
with non-negative y-intercept against all delay measurements from a given landmark Li. This
function is expressed as:

minimize ∑
∀ j 6=i

(di j−migi j−bi) (3.1)

subject to bi ≥ 0; mi ≥ mbase; di j ≥ migi j + bi, ∀ j 6= i. With Equation 3.1, we solve for the
two unknowns mi and bi for the landmark Li. Specifically, we select the smallest RTT delay
experienced from that landmark Li and solve for the unknowns at this delay value, and all
subsequent delays with distances greater than di j. This becomes a linear programming problem.
Figure 3.4 shows an example IPv4 delay distance scatter-plot with the loose bound “baseline”
and tight bound “bestline” for a landmark located in New York City, NY. The resulting bestline
y = mi+bi is the line closest to, but below all the measured distance-delay measurement points
x,y that meet the provided constraints that the bi is non-negative with the smallest mi. Section
3.3.3 explains how we use landmark bestline models to geolocate target hosts.

In cases where bi is negative, bi is set to zero and evaluated to see if the bestline is below all the
delay-distance measurement points x,y. If it is, then bi is set to zero with its corresponding mi.
If the bestline is not below all the distance-delay measurement points x,y, the bestline is set to
baseline values.
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Figure 3.4: Landmark model of geographic distance and network delay

3.3.2 Building Ark Landmark Delay Models
To generate the bestline for each Ark landmark Li, we used the administrative network util-
ity ping described in Section 2.1.2 to measure network delay. Four measuring sessions were
conducted over a four-month period at different segments of a day where RTTs were recorded
between an Ark landmark Li and all other Ark landmarks LN using ping probes. A measuring
session consisted of nine ping probes sent from an Ark landmark Li to all other Ark landmarks
LN . This step was repeated for all Ark landmarks LN in our dataset. In total, up to 36 RTTs were
recorded between any two Ark landmarks. After all RTT measurements were collected over the
four sessions, the smallest RTT measurement observed between an Ark landmark Li and Ark
landmark L j was recorded to build the bestline model. This effectively captures the overall min-
imum network delay between two landmarks during this 4 month period, which helps provide
the tightest bound bestline for each of our landmark.

This procedure was conducted on our Ark landmarks probing both their IPv4 and IPv6 ad-
dresses.

In total, 29 IPv4 and 29 IPv6 bestline models for each landmark from Table 3.2 were generated,
corresponding to our 29 Ark landmarks. We note that as the state of the network is dynamic,
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each landmark bestline model can be re-calibrated through re-probing of the network delay and
geographic distance. In doing this, the overall accuracy of CBG improves and reflects the most
current state of the network. In Chapter 4, we provide our bestline model results for each of our
Ark landmarks.

3.3.3 Using Great Circle Constraints to Geolocate Hosts
The CBG methodology uses multilateration with geographic distance constraints based on de-
lay measurements to infer the location of Internet hosts. The estimated geographic distance
constraint ĝiτ between a landmark Li and target τ is derived from the measured delay diτ using
the bestline model of the landmark Li. In other words, each landmark Li uses its own bestline
equation to calculate a ĝiτ to a target τ using diτ . This is expressed in Equation 3.2.

ĝiτ =
diτ −bi

mi
(3.2)

This constraint represents a great-circle Ciτ with the landmark Li at its center and ĝiτ the radius.
Figure 3.5 shows CBG with three landmarks. Each landmark has no sense of direction to
where the target is located, only that the target is within the circumference of its circle and the
estimated distance to it. Particularly, the estimated distance is always an overestimation since
there is always an additive distortion inherent in network delay measurements as described in
Section 2.1.2.
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Figure 3.5: Basic CBG using three landmarks
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The intersection of all the circles Ciτ to a target τ generates an area region R where the target
is believed to be in and is defined in Equation 3.3, where K is the total number of landmarks.
This can be seen as an order-K Venn diagram, where a given a set of landmarks K produce a
collection of circles Ciτ to geolocate a target τ .

R =
K⋂

i=1

Ciτ (3.3)

To define the physical boundaries of R, which is a convex hull, all the intersection points from
the great-circle constraints Ciτ ’s for a given target τ is collected. The set of points that fall out
of the most restrictive, or smallest circle, are eliminated. The surviving intersecting points are
then sorted and used to find a series of line segments that intersect the circle to isolate only
the points for our desired polygon region to estimate the target location. The area of a R on a
sphere is calculated using Equation 3.4 [33]. Each intersecting point v is a pair of latitude φv

and longitude λv points.

A =−R2

2 ∑
N
v=0(λv+1−λv−1) · sinφi (3.4)

Per the CBG method, the centroid of the region R is chosen as the target’s estimated location.
To calculate the centroid coordinates (cx, cy) of the target τ in R, we perform an approximation
using Equation 3.5 and Equation 3.6 where | M | denotes the determinant of the matrix.

cx =
1

6A

N−1

∑
n=0

(xn + xn+1)

∣∣∣∣∣xn xn+1

yn yn+1

∣∣∣∣∣ (3.5)

cy =
1

6A

N−1

∑
n=0

(yn + yn+1)

∣∣∣∣∣xn xn+1

yn yn+1

∣∣∣∣∣ (3.6)

Figure 3.6 is an example of great-circle distance constraints Ciτ ’s geolocating a host τ over
Western Europe. The shaded orange region is the intersection region R.
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Figure 3.6: Location estimation of target

After inferring the point estimate for each target, the centroid coordinates, we compute the error
distance, which is the distance difference between the centroid estimate and the actual target τ

location. In Chapter 4, we show our results comparing IPv4 and IPv6 CBG geolocation among
three datasets.

3.4 Confidence Regions
The intersected region R provides a confidence level to the estimated position of the target
τ . Intuitively, the area of R quantifies the geographic extent of each host location estimate in
km2. When comparing the two regions in Figure 3.6, we can see that the smaller the area,
the more confident our estimation to the target [25]. We use confidence regions to provide
location estimation resolution and another quantitative metric to compare IPv4/6 geolocation
performance. In Chapter 4 we discuss our CBG geolocation results for our collected datasets.

3.5 AS-level Path Measurements
Studies have shown that IPv4 and IPv6 path similarity, or congruence, is correlated with perfor-
mance [11]. To explore the trends in congruity for AS-level paths, we look at the edit distances
and path lengths of each IPv4 and IPv6 forward AS-level path. First, to find the forward AS-
level path, all IP address hops between from each landmark to a target host is recorded from a
traceroute probe. Next, RouteViews Border Gateway Protocol (BGP) tables are used to match
IPv4/6 addresses to the corresponding autonomous system number (ASN). RouteViews is a
project founded by Advanced Network Technology Center at the University of Oregon to allow
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Internet users to view global BGP routing information from the perspective of other locations
around the internet. RouteViews servers receive their information by peering directly with
other BGP routers, typically at large internet exchange points [34]. Since IPv4/6 address hops
recorded in the traceroute may belong to the same AS, duplicate ASN are not recorded in the
forward AS-level path between a monitor and target host. Thus, only unique ASes on that path
are used to compute edit distance and path length. Table 3.3 is an example of a AS-level path
with ASN values between a monitor that probed a single target in IPv4 and IPv6. We note that
inferring the AS path from IP router interfaces is not perfectly accurate [35], but suffices for the
purposes of our large-scale analysis that seeks to understand the AS path to CBG relationship.

3.5.1 Comparing Paths Using Edit Distances
To compare IPv4 and IPv6 AS-level paths, we use the same technique by Dhamdhere et al.
to compute the number of AS changes, or edits, required to make the IPv4 path identical to
the IPv6 path [11]. Identical paths will have a value of zero edits since there are no changes
needed to the ASs in the IPv4 path to make it the same as the IPv6 AS path. The higher the edit
distance, the more the paths differ. For example, Table 3.3 has an edit distance of three. We
note that additions to a path “shift” the AS-level path to the right. So for the IPv4 AS-level path
to match the IPv6 AS-level path, the following edits would be made: add AS 11537 at position
A, change AS 668 to AS 13 at position C, then lastly add AS 6022 at position D.

Hop A B C D E
IPv4 AS 5050 668 3999
IPv6 AS 11537 5050 13 6022 3999

Table 3.3: Example AS-level path comparison

3.5.2 Comparing Paths Using Path Lengths
The path length of an AS-level path is the number of unique ASs in the AS-level path. From
Table 3.3, the IPv4 AS-level path has a length of three and the IPv6 AS-level path has a length
of five. We will compute the average PL by region and country to determine any correlation
this has with CBG performance.
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CHAPTER 4:
Experimental Results

The goal of this thesis was to explore IPv6 CBG performance compared to CBG IPv4. IPv4-
v6 address pairs were collected to provide a base for comparison. In doing so, we developed
bestline delay models for our Ark landmarks to describe the current state network delay ex-
perienced from each landmark. Then, we conducted RTT measurements from our landmarks
towards hosts within our datasets. Using the Ark landmark bestline models we developed and
collected RTT data from landmark to host, we geolocated each host using the CBG method
described in Chapter 3. We also investigated how AS-level path differences between IPv4 and
IPv6, and AS-level path lengths affect IP CBG performance.

In the results below, we found among our datasets that overall IPv6 CBG geolocated targets
with error distances and area regions larger than IPv4 CBG, but some regions had much greater
error distances than others. The worst case was the Oceania region where CBG IPv6 median
error distance was double that of CBG IPv4 median error distance. The best case was the RIPE
region where CBG IPv6 median error distance outperformed CBG IPv4 median error distance
by roughly 8%.

Using AS-level paths between landmarks and hosts, we used edit distances and PLs to provide
insight into our geolocation performance. We found in each dataset that edit distances seemed
to have a direct relationship with CBG accuracy. The greater the edit distances, the greater the
error distance to the target hosts. We also found that PL did not show a strong relationship with
CBG accuracy.

4.1 Ark Bestline Models
Using the procedures described in Section 3.3, we created 29 IPv4 and 29 IPv6 bestline models
for each Ark landmark representing the relationship between the current network delay and
geographic distance were generated. We also calculated the Pearson Correlation Coefficient
(PCC) of each model. In statistics, the PCC is a measure of the linear correlation (dependence)
between two variables X and Y, giving a value between +1 and −1 inclusive, where 1 is total
positive correlation, zero is no correlation, and −1 is total negative correlation. It is widely
used in the sciences as a measure of the degree of linear dependence between two variables
[36, 37]. For our landmark bestline models, the PCC measures the dependence between RTT
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and geographic distance. Figure 4.1 shows the baseline and bestline model of an IPv4 Ark
landmark located in Aberdeen, MD, U.S. with a high PCC of 0.9360. Figure 4.2 shows the
baseline and bestline model of an IPv6 Ark landmark located in Hong Kong, China, with a
negative PCC (inverse relationship) of −0.7518.

Figure 4.1: Landmark bwi with high PCC Figure 4.2: Landmark hkg with low PCC

Table 4.1 shows our bestline results for IPv4 and IPv6 along with the PCC. We point out that all
negative PCC for both IPv4 and IPv6 are landmarks located in the APNIC and Oceania regions.
This indicates a poor correlation and dependence between RTT and geographic distance, thus
making it more difficult to accurately geolocate hosts from these landmarks.
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IPv4 IPv6

Landmark mi bi PCC mi bi PCC

ams 0.0113 0.3413 0.9333 0.0113 0.2433 0.8848

ams2 0.0113 0.3521 0.8951 0.0114 0.2706 0.9298

ams3 0.0100 0.0000 0.8794 0.0100 0.0000 0.9297

bcn 0.0135 11.3463 0.9055 0.0138 9.1904 0.8558

bma 0.0145 6.8992 0.8705 0.0152 7.4310 0.9017

bwi 0.0128 8.816 0.8875 0.0119 5.3649 0.9360

cbg 0.0123 2.6073 0.9077 0.0108 3.0331 0.8810

cgk 0.0120 4.2376 0.2866 0.0100 24.6548 0.1529

cph 0.0142 1.8542 0.9177 0.0132 2.3132 0.6112

dac 0.0161 6.5948 0.3349 0.0135 28.7467 -0.2614

dub 0.0150 1.8687 0.9101 0.0150 1.9122 0.8867

eug 0.0103 5.6024 0.8459 0.0100 0.0000 0.9095

hel 0.0100 0.0000 0.8591 0.0100 0.0000 0.7733

her 0.0100 0.0000 0.7757 0.0100 0.0000 0.7449

hkg 0.0137 0.0000 -0.2397 0.0148 0.0000 -0.7518

iad 0.0123 1.6550 0.9522 0.0114 1.9994 0.7020

jfk 0.0100 0.0000 0.9473 0.0108 2.1358 0.7062

ktm 0.0199 0.0000 0.2346 0.0147 47.9024 -0.0104

lax 0.0100 0.0000 0.9121 0.0130 1.3225 0.9196

mnl 0.0140 3.0674 0.5465 0.0100 0.0000 -0.1875

per 0.0118 2.8490 0.0831 0.0128 0.8105 -0.1225

san 0.0100 6.0577 0.9046 0.0108 1.5634 0.9277

sin 0.0110 4.0304 0.2642 0.0100 24.5755 -0.1424

sjc2 0.0120 0.3828 0.8872 0.0120 0.4080 0.6804

sql 0.0120 0.3798 0.9028 0.0120 0.3791 0.7722

syd 0.0103 5.8406 0.4668 0.0105 5.3352 0.3739

tpe 0.0100 0.0000 0.2764 0.0100 0.0000 0.1520

yow 0.0123 6.7287 0.8937 0.0125 4.4403 0.8987

zrh2 0.0100 0.0000 0.8700 0.0119 3.3081 0.8479

Table 4.1: Archipelago landmark bestline models
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4.2 Target Host Datasets
This study uses three different datasets of IPv4 and IPv6 IP addresses as summarized in Table
4.2.. These datasets enable us to independently geolocate the host using its IPv4 and IPv6
addresses for comparison.

For each of our datasets, we conducted probing sessions similar to those described in Section
3.3.2 where each host, playing the role of a “target” to be geolocated, was sent nine ping probes
to its IPv4 address and nine ping probes to its IPv6 address. An additional traceroute was
used for debugging and to record the AS-level paths. Four probing sessions were conducted
over a one month period at different segments of a day and the shortest RTT from a given
landmark to a target was then used for geolocation. Using the steps described in Section 3.3.3,
we estimate two area regions and two centroids for each target, one based the IPv4 address and
one based on the IPv6 address. For our UNI and CDN datasets with known ground truth, we
calculate the error distance to each target from the IPv4 and IPv6 centroid coordinates to the
actual location coordinates. The error distance delta (EDD) was also calculated which is the
absolute error difference between the error distances of IPv4 and IPv6. The EDD allows us
to compare how close each estimated IP version geolocation was relative to the other. For our
ONE2ONE dataset with unknown ground truth, we calculated the distance between the IPv4
and IPv6 centroid coordinates.

Dataset No. of No. of Regions No. of Countries Ground truth Description
Hosts Represented Represented known

UNI 53 4 8 Yes Manually collected

CDN 1940 6 69 Yes Provided

ONE2ONE 1697 6 69 No Provided

Table 4.2: Dataset characteristics

For each dataset, we compared our CBG results against the IP geolocation database MaxMind.
MaxMind distributes free IPv4 and IPv6 geolocation databases, enabling us to retrieve their
estimated location data for an IP address [15]. We note that although MaxMind’s free ver-
sion is advertised to be less accurate than their licensed IP geolocation software, we compared
MaxMind against our CBG results as a general comparison of performance.

Lastly, we examined and compared IPv4 and IPv6 AS-level paths to targets to uncover any
relationship between AS-level path patterns to CBG performance. Determining the AS path
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from each vantage point to each target requires running traceroutes and then mapping interface
addresses to ASs. We note that both of these processes have errors; some paths force commu-
nicating peers to timeout for IPv6 due to routing behavior or ICMP6 filtering. The ability to
reach both IPv4 and IPv6 can be as low as 66% [38]. For this study, we limit our analysis on
traceroutes that respond to both IPv4-v6 address pairs.

4.3 Academic Institutions (UNI) Dataset
In obtaining our UNI dataset, we relied on the insight that established academic institutions
often host their own network infrastructure on-site, especially in the U.S. We first looked at
the Allesedv database which lists academic universities and institutions that are IPv6-enabled
[39]. Then, we conducted manual DNS queries for AAAA resource records from this list of
IPv6-enabled websites. The AAAA record maps an hostname to an IPv6 address similar to
how an A record maps an hostname to an IPv4 address. The answer section of the AAAA
contains the query answer, the IPv6 address for a given hostname. We discard any hosts whose
AAAA records had any indications a third-party was hosting the site (e.g., content distribution
provider, web-hosting service). We repeated these steps to obtain the IPv4 address from our
list of hostnames. Our target hosts are only those with both IPv4 and IPv6 addresses registered
in the DNS. After determining the IPv4 and IPv6 addresses of these institutions, we use the
publicly-known location of each site as the actual location of the hosted site. Each physical
address is then looked up for its latitudinal and longitudinal coordinates using a web-based
geographical coordinate conversion tool [40]. Table 4.3 shows the breakdown of the locations
of our UNI target hosts by region and country. The UNI dataset was collected in May 2013.

4.3.1 UNI Geolocation
Table 4.3 shows our IP CBG performance for our UNI dataset alongside results from MaxMind.
The EDD is also computed, where EDD is the absolute distance difference between IPv4 and
IPv6 error distances to the actual target location. In other words, this is the difference in IPv4-v6
inferred CBG error distance. The EDD provides a perspective on how far IPv6 CBG estimated
the host location relative to IPv4 CBG.

Overall, IPv6 CBG average error distance performs roughly 33% worse than CBG IPv4 eon the
UNI targets. Yet, the overall IPv6 CBG error distance median is only 17% worse than the IPv4
CBG error distance median. This large difference between average and median is weighted
heavily on the much larger error distance experienced in the Oceania region, specifically New
Zealand. The RIPE and ARIN regions show comparable CBG performance between IPv4 and
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IPv6. RIPE IPv6 CBG average error distance performs around 20% worst for this region against
IPv4, yet the median error distance is nearly the same. With only six target hosts, the higher
average is due to some hosts with large error distances.

Surprisingly, for the sole country in the APNIC region for this dataset, China, IPv6 CBG geolo-
cation performs roughly 37% better than IPv4 CBG geolocation. When comparing MaxMind’s
result for this target, MaxMind has zero EDD between IPv4 and IPv6. Taking a closer look, we
queried the geographic coordinates for the IPv4-v6 pairs in MaxMind and found coordinates
for both IPv4-v6 at the center of the country. It appears that MaxMind in this case assigned the
same geographic point for both IPv4 and IPv6. We were unable to discern if MaxMind mapped
the IPv6 address to the IPv4 address and returned the location of the IPv4 address, or whether
this behavior is a simply a characteristic of the free MaxMind database.

CBG MaxMind

Location No. of IPv4 IPv4 IPv6 IPv6 EDD EDD IPv4 IPv4 IPv6 IPv6 EDD EDD
Hosts Avg Median Avg Median Avg Median Avg Median Avg Median Avg Median

APNIC 1 2381 2381 1494 1494 887 887 1143 1143 1143 1143 0 0
RIPE NCC 6 250 248 311 251 73 16 6 6 1488 394 1482 389

ARIN 45 600 484 761 601 326 136 54 5 1528 1745 1474 1587
Oceania 1 2815 2815 13627 13627 10812 10812 0 0 514 514 513 513

China 1 2381 2381 1494 1494 887 887 1143 1143 1143 1143 0 0
Germany 1 358 358 336 336 22 22 10 10 306 306 296 296

Italy 1 384 384 746 746 362 362 3 3 7172 7172 7170 7170
New Zealand 1 2815 2815 13627 13627 10812 10812 0 0 514 514 513 513

Spain 1 22 22 13 13 9 9 5 5 538 538 534 534
Switzerland 1 466 466 462 462 4 4 9 9 122 122 113 113

United Kingdom 2 135 135 156 156 20 20 5 5 394 394 389 389
United States 45 600 484 761 601 326 136 54 5 1528 1745 1474 1587

Overall 53 636 464 967 561 506 136 68 5 1497 1577 1429 1402

Table 4.3: UNI error distances (km) for inferred CBG and MaxMind

Figures 4.3 and Figure 4.4 shows our cumulative distribution function (CDF) error distance and
EDD for the UNI dataset. Roughly 80% of both IPv4 and IPv6 CBG geolocated the true target
location under 1,000km. MaxMind geolocated to near 80% of targets to 10km or less, which is
consistent with their advertised city-level fidelity for IPv4. MaxMind advertises country-level
accuracy for IPv6 geolocation which helps explain why IPv6 performs much worse than IPv4.
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Figure 4.3: CDF error distance for UNI
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Figure 4.4: CDF error distance difference for UNI

Figure 4.5 shows the confidence regions for IPv4 and IPv6 CBG. We described in Section 3.4
that confidence regions provide an estimated area in which the target is located. The smaller the
area, the more confident is the target estimation [25]. We see here that IPv4 areas are slightly
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smaller than IPv6, providing a slightly higher confidence region. A confidence regions of 105

km2 is roughly the size of the Republic of South Korea or the U.S. state of Kentucky.
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Figure 4.5: CDF Confidence region for UNI CBG

For this dataset, we see overall IPv6 CBG geolocation perform worse than IPv4 CBG geolo-
cation in average error distance and median error distance. Although most regions have few
hosts, this dataset still indicates some regions have much better IPv6 CBG geolocation than
other regions. It also indicates potentially how well IP CBG performs in certain regions overall.

4.3.2 UNI AS-level Path
Described in Section 3.5, each landmark will send an IPv4 and IPv6 traceroute probe to each
host in a dataset. The traceroute probes we collected during our probing sessions are now used
to measure the AS-level path. We discard duplicate traceroutes between a landmark and host,
resulting in our final IPv4 and IPv6 traceroutes to perform our analysis. In total, we collected
1,484 IPv4 and 1,583 IPv6 unique traceroutes from our landmarks. Of those traceroutes, 6%
IPv4 and 14% IPv6 of traceroutes did not get replies from the destination target hosts. We
matched 1,360 traceroutes between IPv4 and IPv6 for direct comparison of AS-level edit dis-
tance and PL.

Table 4.4 shows the number of traces per country and region. The average edit distance and PL
is highest for China, which also has the second largest CBG error distance found in Table 4.3.
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New Zealand is not shown below due to traces to that target host not responding. We also find
that the overall PL is shorter for IPv6 than IPv4 which is consistent to what was found in recent
work discussed in Section 3.5. Note that the average PL for Germany is larger than the United
States, but the CBG EDD for Germany is much smaller compared to the United States. The edit
distance for Germany is smaller compared to the United States. This leads us to believe that
edit distance has a greater affect on CBG performance than PL.

Location No. of Edit Distance Edit Distance IPv4 PL IPv6 PL
Traces Average Median Average Median

APNIC 27 5 5 5.556 5

RIPE NCC 189 2.085 2 4.143 4

ARIN 1144 2.601 3 4.493 4

China 27 5 5 5.556 5

Germany 27 2.37 3 4.889 5

Italy 27 3.259 3 4.074 4

Spain 54 1.981 2 4.37 4

Switzerland 27 1.741 1 3.889 4

United Kingdom 54 1.63 1 3.704 4

United States 1144 2.601 3 4.493 4

Overall 1360 2.577 3 4.465441 4

Table 4.4: UNI edit distances and path lengths

4.4 Content Distribution Network (CDN) Dataset
Our second dataset is the IPv4 and IPv6 addresses of 1,940 dual-stacked servers from a content
distribution network dispersed throughout the globe with known geographic coordinates. The
CDN dataset is different from the UNI dataset in that CDN has nearly 40 times as many hosts,
and are geographically placed throughout the world. Table 4.5 shows the regions where these
hosts are located along with CBG and MaxMind geolocation performance.

4.4.1 CDN Geolocation
Table 4.5 shows our comparison of geolocating IPv6 against the IPv4 pair. The average error
distance for IPv4 and IPv6 CBG are 913km and 1380 km, respectively. The median error dis-
tance for IPv4 and IPv6 CBG are 516 km and 668 km respectively. Again we find that, overall,
IPv6 average error distance performed 33% worst than IPv4, and IPv6 median error distance
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23% worse over IPv4. The RIPE and ARIN regions exhibited the best CBG performance. In-
terestingly, only RIPE IPv6 CBG geolocation median error distance was lower than its IPv4
median error distance. This performance difference may be due to the popularity of IPv6 in the
RIPE region, especially in Western Europe. We note that three of the top countries with the
largest CBG EDD are from the Oceania region.

AfriNIC and LACNIC performed by far the worse with IPv4 and IPv6 CBG error distance
medians three to four times larger than the RIPE NCC error distance medians. Poor performance
in these regions is not surprising since most of our landmarks are located in the RIPE and ARIN
regions. When comparing AfriNIC CBG performance alone, although the error distances for
both IPv4 and IPv6 were well over 1,000km, we find that IPv6 had 39% better geolocation
estimation than IPv4. MaxMind performance is worst in the Oceania region. Overall, we find
that MaxMind outperforms only CBG IPv4 and IPv6 error distance medians.

CBG MaxMind

Location No. of IPv4 IPv4 IPv6 IPv6 EDD EDD IPv4 IPv4 IPv6 IPv6 EDD EDD
Hosts Avg Median Avg Median Avg Median Avg Median Avg Median Avg Median

AfriNIC 30 3795 3345 2328 2435 2016 1844 242 2 1426 509 1415 509
APNIC 186 1230 886 2682 1433 1861 712 401 166 2503 397 2731 517
ARIN 823 571 439 769 583 384 186 1469 874 1418 1074 2185 1838

LACNIC 102 2484 2181 2447 2210 1823 1795 335 130 1552 1216 1567 1114
RIPE NCC 647 667 345 745 319 244 82 505 79 828 247 514 333

Oceania 152 1810 758 4902 1518 3301 724 2003 161 3623 1467 3321 1709

Overall 1940 914 516 1380 668 808 199 1008 231 1505 481 1724 944

Table 4.5: CDN regional error distances (km) for inferred CBG and MaxMind

Table 4.6 lists the top 10 countries in this dataset by largest CBG EDD. We see four countries,
United Arab Emirates, Qatar, Bahrain, and Oman are among the top 10 countries located in the
RIPE NCC region with large CBG EDD. Also, the IPv4 CBG average error distance for these
countries are also large. These four countries are the only four located on the Saudi Arabian
peninsula in this dataset.
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Inferred CBG MaxMind

Location No. of IPv4 IPv4 IPv6 IPv6 EDD EDD IPv4 IPv4 IPv6 IPv6 EDD EDD
Hosts Avg Median Avg Median Avg Median Avg Median Avg Median Avg Median

New Caledonia 3 1932 1932 11973 12291 10041 10360 0 0 130 130 130 130
New Zealand 24 4286 1673 10282 11768 6274 5802 148 105 790 464 895 574

United Arab Emirates 6 2943 3006 7214 7213 4270 4298 36 36 4835 4835 4800 4800
Qatar 3 2717 2827 5580 5437 2863 2749 36 36 0 0 37 37

South Korea 3 4816 4872 7657 7976 2841 3104 697 697 10943 10943 10247 10247
Bahrain 6 2594 2654 5399 5388 2805 2746 3 3 27 27 23 23
Oman 6 4370 4603 5041 5822 2794 2770 0 0 333 333 333 333

Australia 93 1651 737 4193 1279 2779 373 3181 1687 4805 1748 4261 1852
Singapore 18 375 116 2940 1608 2565 1244 78 0 5060 16 4982 16
Malaysia 9 746 429 3305 1091 2558 673 0 0 1220 1205 1220 1205

Table 4.6: CDN top 10 countries sorted by largest CBG error distances (km) difference (EDD)

From Figure 4.6 we see that IPv4 CBG performs slightly better than IPv6 CBG in estimating the
distance to the target. For approximately 40% of the targets, CBG IPv4 outperforms MaxMind,
this occurs around 1000km. CBG IPv6 outperforms MaxMind.
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Figure 4.6: CDF error distance for CDN CBG and MaxMind

Figure 4.7 shows the CDF of the EDD for CBG and MaxMind. For roughly 60% of the targets,
CBG outperforms MaxMind, this occurs around 100km.
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Figure 4.7: CDF of CDN error distance difference (EDD) for CBG and MaxMind

Figure 4.8 shows the confidence regions for the CDN dataset. Similar to what we found in
the UNI dataset, the IPv4 areas are consistently smaller than the IPv6 regions, thus giving us a
higher confidence of target host location estimate. Results show that for about 50% of the areas
for IPv4 and IPv6 are about the size of the U.S. state of Texas.
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Figure 4.8: CDF Confidence region for CDN v4-v6 pairs
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4.4.2 CDN AS-level Path
For the CDN dataset, 54,682 IPv4 and 58,026 IPv6 traceroutes were collected from our land-
marks during our ping probing sessions. Like our UNI dataset, we discard duplicate traceroutes
between a landmark and host, resulting in our final set of traceroutes to perform our analysis.
Of those received, 3,472 IPv4 and 12,592 IPv6 traceroutes did not reach the target hosts. We
were able to match 45,409 traceroutes between IPv4 and IPv6 for direct comparison of AS-level
edit distance and PL. This is approximately an 84% match rate to IPv4 traceroutes.

Table 4.7 shows the number of traces per country and region. We can see that the average edit
distances and path lengths are lowest for RIPE and ARIN, both below the overall edit distance
average. These are also regions where the CBG performed the best as we found in the Section
4.4.1. We find that the Asia region average edit distances require the most edits to match IPv4
AS-level paths to their IPv6 counterpart. This may explain CBG’s subpar performance although
we have five landmarks in the APNIC region. Additionally, the overall IPv6 PL is shorter than
the overall IPv4 PL. As mentioned in Section 2.2.3, recent work has shown that the IPv6 PL
has been decreasing over time, and in some cases has become shorter than IPv4 PL. Although
this may be the case, shorter PL does not appear to affect CBG performance as much as edit
distances.

Location No. of Traces Edit Distance Edit Distance IPv4 PL IPv6 PL
Average Median Average Median

AfriNIC 667 2.583 3 4.154 4.495

APNIC 4237 2.72 3 4.207 4.156

RIPE NCC 15436 2.005 2 3.681 3.747

LACNIC 2260 2.686 3 4.146 4.103

ARIN 19128 2.068 2 3.749 3.691

Oceania 3681 2.517 2 4.342 4.444

Total 45409 2.182 2 3.842 3.84

Table 4.7: CDN edit distances and path lengths

4.5 One-to-One (ONE2ONE) Pairs Dataset
Our last dataset comes from [13] and includes IPv4 and IPv6 addresses collected in January
2013. The locations of the ONE2ONE pairs are unknown. However, we use the MaxMind in-
ferred country and region for a point of reference for evaluation. We initially had 3,417 IPv4-v6
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address pairs. After executing ping probes to all of these address pairs from our landmarks, we
received 1,691 matching active response pairs. Since true locations are unknown, we compare
the error distance between the geographic coordinate centroids for CBG IPv4 and IPv6. This is
also done for MaxMind estimated locations. We note that 34 IPv6 addresses were not found in
the MaxMind database.

4.5.1 ONE2ONE Geolocation
We see from Table 4.8 that the EDD distance and average is smallest for RIPE NCC & ARIN
regions. The CBG EDD average and median is largest in the LACNIC region. As previously
noted in the UNI dataset, the inferred MaxMind location for both IPv4 and IPv6 may be as-
signed to the same geographic coordinates, driving the MaxMind EDD much lower. This ap-
pears to be the case for APNIC and LACNIC regions since the EDD median is surprisingly low
for this dataset, while we found in the CDN dataset indications that MaxMind IPv4 and IPv6
location estimates are very large from each other. From Table 4.9, we see that LACNIC has a
median edit distance of four which is an indicator of this occurring. Also, the highest average
edit distance is from the LACNIC region and it has the only median edit distance of four among
all the regions. This supports the finding that the greater the edit distances, the greater the error
distance.

CBG MaxMind

Location No. of EDD EDD EDD EDD
(MaxMind Inferred) Hosts Average Median Average Median

AfriNIC 8 3645 3828 1477 431

APNIC 204 3899 1209 150 5

RIPE NCC 896 319 182 365 82

LACNIC 19 7411 8184 85 0

ARIN 509 1070 97 1464 1843

Oceania 55 5989 2785 814 299

Total 1691 1257 218 686 127

Table 4.8: ONE2ONE regional error distance differences (km)

Figure 4.9 further shows that the MaxMind EDD has smaller error distances overall compared
to CBG.
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Figure 4.9: CDF error distance difference (EDD) ONE2ONE v4-v6 pairs

As shown in Figure 4.10, the IPv6 area size is comparable to IPv4 area. Areas larger than 106

km2, a little larger than the area of Texas, is where IPv6 confidence regions begins to diminish
compared to IPv4.
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Figure 4.10: CDF area regions for ONE2ONE
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4.5.2 ONE2ONE AS-level Paths
We received 47,821 IPv4 and 50,682 IPv6 traceroutes from our landmarks. Of those received,
3,055 IPv4 and 11,170 IPv6 traceroutes did not reach the target hosts. We were able to match
39,489 traceroutes between IPv4 and IPv6 for direct comparison of AS-level edit distance and
PL. This is roughly 82% match rate to total IPv4 traceroutes.

Here again we find that LACNIC and APNIC region average edit distances are the highest
among its peers. Looking back at Table 4.8 we see that LACNIC has the largest EDD me-
dian distance, but is followed by Oceania and then APNIC for largest inferred location median
difference distance.

Location No. of Edit Distance Edit Distance IPv4 PL IPv6 PL
(MaxMind Inferred) Traces Average Median Average Average

AfriNIC 198 2.48 3 5.323 5.283

APNIC 4976 2.907 3 4.364 4.015

RIPE NCC 21678 2.443 2 4.047 3.935

LACNIC 335 3.678 4 4.988 4.191

None 26 1.769 1 3.846 3.538

ARIN 11014 2.176 2 3.756 3.351

Oceania 1262 2.61 2 4.677 4.595

Total 39441 2.443 2 4.04 3.812

Table 4.9: ONE2ONE regional edit distances with path length
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CHAPTER 5:
Conclusion

This thesis sought to investigate whether using latency-based measurements was a viable “first-
step” coarse-grain geolocation technique for IPv6 hosts. Using the CBG technique from Gueye
et al. we created bestline models using multilateration of known landmarks to capture the net-
work delay patterns of the IPv4 and IPv6 Internet. Using great circle constraints from our
landmarks, we geolocated target hosts to a constrained area to produce an inferred target lo-
cation. We performed CBG geolocation for IPv4 and IPv6 pairs to compare performance as
well as provide a general comparison against a commercial IP geolocation database. We further
provided some insight into performance variations by computing edit distances and path lengths
from traceroutes between our set of landmarks and each target host.

We found that among all datasets, overall, IPv6 CBG geolocated targets with error distances
and area regions larger than IPv4 CBG, but some regions had much greater error distances
than others. The worst case was the Oceania region where CBG IPv6 median error distance
was doubled as compared to CBG IPv4 median error distance. The best case was the RIPE
region where CBG IPv6 median error distance outperformed CBG IPv4 median error distance
by roughly 8%. The major differences in the two regions, Oceania and RIPE NCC, are the
AS-level differences found between IPv4 and IPv6 in those regions, and the landmark den-
sity. Consistent with previous IP geolocation studies leveraging landmarks, we also find that,
typically, the higher the density of landmarks in a region of the target host, the higher the ge-
olocation accuracy [9, 24–26, 29]. We also found that targets located in the Oceania region had
among the largest EDD between IPv4 and IPv6 even though four landmarks were present in
that region. For UNI and CDN datasets with known host locations, hosts in Oceania had an
IPv4 error distance average of at least 1,800km.

Using AS-level paths between landmarks and hosts, we used edit distances and PLs to provide
insight into our geolocation performance. We found in each dataset that edit distances seemed
to have a direct relationship with CBG accuracy. The greater the edit distances, the greater
the error distance to the target hosts. We calculated the PCC for edit distance to median error
distance for UNI and found IPv4 had 0.997 correlation and IPv6 had 0.994 correlation. For the
CDN dataset, the PCC for edit distance to median error distance of IPv4 was 0.584 correlation
and IPv6 was 0.860 correlation. PL did not show a strong relationship with CBG accuracy.
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5.1 Future Work

To the best of our knowledge, this thesis is the first publicly available latency-based IPv6 ge-
olocation study using a modest probing infrastructure and non-trivial target dataset. Below are
items that could be studied to further this initial work:

Increase the number of landmarks in specific regions. Our study did not have any vantage
points or landmarks located in the AfriNIC or LACNIC regions. Increasing the number of land-
marks in both regions could boost CBG geolocation performance. Our results show that areas
where we did have landmarks generally resulted in higher CBG geolocation performance; how-
ever, this was not always the case. The APNIC and Oceania regions each had four landmarks,
yet CBG geolocation EDD for the UNI and CDN datasets were significantly larger compared to
other regions with landmarks. It would be valuable to increase the number of landmarks in the
APNIC and Oceania regions, and observe the change to CBG geolocation. Adding landmarks
in AfriNIC and LACNIC would also show if CBG geolocation would perform as well as the
RIPE NCC and ARIN regions did on our data.

Selectively choose landmarks. A study conducted by [29] showed that with many vantage
points, vantage point proximity to the target host is the most important factor affecting accuracy.
A process to select only the best landmarks to geolocate host could be developed. We suggest
two features as a starting point for review: RTT and correlation coefficients.

First, in selecting the best set of landmarks among a pool of landmarks to geolocate a host, we
suggest using landmarks based on a minimum RTT threshold. In other words, after sorting RTTs
measured among a set of landmarks to a target host from lowest to highest RTT, determine a cut
off threshold of minimum RTTs to use in geolocating the target host. The cut off RTT threshold
would vary depending on which landmarks further minimized the error distance between CBG
target host estimation to true host location. This suggestion is based on the observation that short
RTTs between a landmark and target host typically show landmarks that are geographically
closer to target. If a RTT threshold were set for each target host, only landmarks that were close
to the target host would be used to geolocate the host. This falls in line with the study completed
by [26] that geolocation rarely works better than the distance to the nearest landmark. If a much
larger set of landmarks were accessible, using this RTT threshold strategy could potentially
increase geolocation accuracy.

The second feature where we suggest further study is how correlation coefficients of landmark
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bestline models affect geolocation performance. We found Ark landmark bestline models with
negative Pearson correlation coefficients had poor RTT to geographical distance relationship.
In our study, we did not discard any Ark landmarks when geolocating hosts. However, learning
what effects, if any, if a landmark with poor correlation affects geolocation, would be interest-
ing. If this feature does prove beneficial, selecting a set of landmarks among a larger set could
further increase CBG geolocation accuracy.

Investigate delay within AS. From Section 4 we found that AS edit distances between IPv4
and IPv6 paths have a strong relationship on CBG geolocation accuracy. We also found in
some regions where IPv4 or IPv6 path lengths were shorter compared to other regions, yet
experienced larger error distances. It would be interesting to conduct more analysis on delay
within certain ASs. This could provide CBG geolocation an ability to compensate, or adjust
calculations, when ping probes are measured through ASs that have longer routing times.

Fine-grain geolocation. The study conducted in [9] developed a three-tier model for fine-
grain geolocation, decreasing error distances to as low as 690 meters from estimated location to
true location. The researchers’ results were based only on IPv4 hosts and a large pool of over
160 ping and traceroute servers. Additionally, their study collected web-based landmarks that
contributed to their geolocation. If able to acquire a comparable pool of IPv6 capable ping and
traceroute servers along with IPv6 capable web-based landmarks, it would be interesting to see
the ability to conduct fine-grain geolocation in the IPv6 space. Moreover, if able to leverage
IPv4 web-based landmarks, it would be valuable to understand how this added information
could support IPv6 geolocation in a non-dense IPv6 environment.
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